
Collective Communication Patterns

Nicholas Chen *
nchen@illinois.edu

Rajesh K. Karmani *
rkumar8@illinois.edu

Amin Shali *
shali1@illinois.edu

Bor-Yiing Su **
subrian@eecs.berkeley.edu

Ralph Johnson *
johnson@cs.uiuc.edu

* Computer Science Department
University of Illinois at Urbana-Champaign

** EECS Department
University of California, Berkeley

April 30, 2009

CHAPTER 1

Introduction

Normal point-to-point communication is the process of sending and receiving messages from one
unit of execution(UE)[MSM04] to another UE. Collective communication, on the other hand, is the
process of exchanging information between multiple UEs: one-to-all or all-to-all communications.

While arbitrarily complex communication patterns can emerge depending on the parallel algo-
rithms used and the topology of the UEs, most communication between UEs actually follow very
regular patterns.

Our pattern language, shown in Table 1.1, provides a catalog of those regular collective com-
munication patterns that are used in scientific computing1. While there are various collective com-
munication patterns, we have distilled those that we have found to be used commonly in various
algorithms.

Following such patterns whenever possible not only make programs more succinct but also ex-
pose their intents better to other programmers. These collective communication patterns are so
common in scientific computing that most parallel programming environments such as OpenMP,
MPI and Java provide their own built-in constructs to support some, if not all, of them. Program-
mers are encouraged to browse through the list of APIs on their specific platforms to see if such
patterns have already been provided before implementing their own. Using the built-in constructs
not only prevents reinventing the wheel but also offers better performance since the constructs have
been tuned for their specific platforms.

In this paper, we examine the following parallel programming environments and discuss the
facilities that they provide for our patterns:

1. MPI[MPI]

2. OpenMP[Ope]

3. Charm++[Cha]
1For this submission, we will only focus on the first two patterns: Broadcast and Reduction.

1

4. CUDA[CUD]

5. Cilk[Cil]

6. FJ Framework[JSR]

7. Intel TBB[TBB]

8. Java[Jav]

Pattern Problem Classification

Broadcast How does one efficiently share the same data from one UE to
other UEs?

One-to-all

Reduction How does one efficiently combine a collection of values, one
on each UE, into a single object?

All-to-one

Scatter How does one efficiently divide data from one UE into chunks
and distribute those chunks to other UEs?

One-to-all

Gather How does one efficiently gather chunks of data from different
UEs and combine them on one UE?

All-to-one

Table 1.1: Collective Communication Pattern Language

These patterns often work together in an algorithm. Some algorithms will use the reduction
pattern to combine the values followed immediately by a broadcast to send the values to every
other UE. Because this combination of reduce-broadcast is used often, some environments actually
provide constructs to support them. In MPI, this is provided as the MPI Allreduce construct.

Our pattern language does not present the combination of patterns in our catalog. Instead,
only the basic patterns are presented and the programmers can determine what combinations to
use depending on their algorithms and the constructs that are provided in their environments.

2

CHAPTER 2

Broadcast

2.1 Problem

How does one efficiently share the same data from one UE to other UEs?

2.2 Context

In parallel computing it is common for one UE, say UE#1 to have the data that other UEs require
for their computation. This arises naturally from using the Task Decomposition and Data
Sharing patterns[MSM04] where each UE is assigned a different responsibility. For instance,
UE#1 might be responsible for reading data from disk and it needs to share the data that it
has read with the other UEs. Or UE#1 might be responsible for computing the result of a long
running computation that it needs to share with the other UEs once it is done; the other UEs can
still proceed with their computations while waiting for UE#1.

Consider the case of matrix-vector multiplication used in solving circuit equations[Boy97]. One
simple way to parallelize this algorithm would be to decompose the original matrix A into rows and
assign a row to each UE. Another UE would be responsible for obtaining the vector b and sharing
the vector b with all the other UE. We call this process of sharing the same data with other UEs
a Broadcast.

Once the data has been successfully shared, each UE can then calculate the result for a particular
row in the resulting vector c. If necessary, the partial results for each row of the vector c can then
be combined using the Gather pattern. The parallelized matrix-vector multiplication is illustrated
in Figure 2.1. Same colored elements reside on the same UE.

3

Figure 2.1 Matrix-vector Multiplication

2.3 Also Known As

In computer networking, there are two common terms to describe sharing of data from one UE to
other UEs.

A multicast operation delivers the data from one node to other nodes in a particular group —
a collection of nodes — in the network. On the other hand, a broadcast operation delivers the data
from one node to every node in the network.

However, the term broadcast has been used extensively in the parallel computing world to mean
delivery to a group of UEs or to every UE in the topology. The facility for creating groups depends
on the parallel programming environment.

In our pattern language, we shall use this more general definition of broadcast.

2.4 Forces

One-to-all or One-to-many In a broadcast operation, it is possible to send the data to every
UE in the topology (one-to-all) or to a particular group of UE (one-to-many). Whenever
possible, restricting the broadcast to only UEs that require the data is better for performance.
In the case of message-passing, doing so reduces the messages that need to be sent on the
network. And in the case of shared-memory environments, doing so reduces the overhead of
maintaining cache coherence when a shared variable is modified.

Push vs. Pull A broadcast operation is essentially a push operation. Every UE that is involved
in the broadcast operation must be prepared at some point to receive the data. Some parallel
programming algorithms fit this push model very well. On the other hand, some algorithms
might fit better with a pull model where the UEs that are interested in obtaining the data
will query the UE with that data when it needs it.

2.5 Solution

Use the broadcast construct if one is provided by the parallel programming environment. Broad-
cast is such a common pattern in scientific computing that it is included in most parallel program-

4

ming environments (see Table 2.1). The broadcast construct that is provided by the programming
environments has been tuned to satisfy the needs of most programmers.

Environment Broadcast Construct
MPI MPI Bcast(buffer, count, datatype, root, comm)
OpenMP #pragma omp flush
Charm++ Sending a message to a ChareArray-type object broadcasts it to all objects

contained in that ChareArray
CUDA NONE
Cilk NONE
FJ Framework Can be simulated using the apply(Ops.Procedure procedure) method on

a ParallelArray
Intel TBB Use the provided atomic operations on atomic<T> datatypes
Java volatile, synchronized, explicit and implicit locks,

java.util.concurrent.atomic classes

Table 2.1: Broadcast constructs in parallel programming environments

Broadcast is essentially a way of exchanging information between UEs. In a message-passing
environment, a broadcast operation is done by sending messages to the other UEs – the only way
to exchange information between UEs. Thus using the broadcast construct involves thinking about
the coordination between different UEs and knowing when to invoke the broadcast construct.

In a shared-memory environment, however, a broadcast operation is actually a read operation
on some shared variable. Since the data is stored in a shared variable, it does not need to be sent
to different UEs. A UE that is interested in the data can just access it. The challenge, in this
case, is to synchronize access to the shared variable so that interested UEs do not access a stale
value. Every time a variable is updated, the UEs have to be notified, the cached copies have to be
invalidated and the new value has to be fetched from memory when needed.

In an environment such as Java, broadcasting the value of a variable is as simple as annotating
it with the volatile keyword and letting the environment take care of the rest. A variable declared
as volatile is guaranteed to have its last written value reflected across all UEs.

Some environments such as MPI enforce that all the UEs must be created at the start of the
program; other environments such as Java and Cilk allow the creation of new UEs dynamically at
runtime. In such dynamic environments, the source UE can broadcast its data to the new UEs as
it is creating them. For instance, in Java, a parent thread can spawn new threads and broadcast a
copy of its data to all its child threads through their constructors.

If the parallel programming environment does not provide a broadcast construct programmers
might need to write one of their own. The Actor pattern discussed in [OPL] is a pattern centered
around message-passing. However, unlike MPI or Charm++, popular Actor[Agh86] languages
such as Erlang and Scala do not provide built-in constructs for broadcast and programmers have
to implement them by hand.

We summarize the two common methods — sequential broadcast and recursive doubling —
for implementing broadcast operations in a message-passing environment presented in [GGKK03].
Implementing broadcast in a shared memory environment usually requires primitives to be provided
by the underlying OS and is beyond the scope of this paper.

5

2.5.1 Sequential Broadcast

Figure 2.2 Sequential Broadcast

A sequential broadcast is the simplest way to implement a broadcast operation. In Figure 2.2,
UE#1 is in charge of sending the same data to the other UEs. While this is a simple approach, it
is also inefficient and unscalable because UE#1 becomes a bottleneck; the communication channels
between pairs of the other UEs are not being utilized at all.

Nonetheless this approach is simple and convenient when there are not a lot of UEs to broadcast
the data to.

And in some cases, this might be the only way to do a broadcast. In an MPI environment,
all the UEs are aware of one another and can communicate by using their rank IDs. This works
because there is a static number of UEs that are initialized once and remain available throughout
the entire computation. However, in a more dynamic environment such as an Actor system, UEs
might be created and destroyed as the computation proceeds. Thus, not every UE will be aware
of all the newly created or just destroyed UEs. Each UE knows only a subset of the available
UEs in the topology. In fact in such a dynamic environment, making each UE aware of the other
UEs is prohibitively expensive since it would require an update to be send to every creation and
destruction of a UE.

So in Figure 2.2, it might be the case that UE#1 is the only UE that knows about UE#2,
UE#3, UE#4, UE#5 and UE#6. If so, only UE#1 can broadcast the data and we cannot use the
more efficient recursive doubling technique described in Section 2.5.2.

2.5.2 Recursive Doubling

The recursive doubling technique is a more efficient way to broadcast data from one UE to other
UEs. In Figure 2.3, UE#1 sends the data first to either UE#2 or UE#3. After receiving the data,
UE#2 can start sending the data to UE#4 and UE#5 while UE#3 can start sending its copy of
the data in parallel to UE#6. Thus the broadcast operation completes in logarithmic time instead
of linear time.

Recursive doubling is useful when there are a lot of UEs to broadcast the data to. However, as
mentioned in Section 2.5.1, this technique only works if every UE is capable of sending a message
to every other UE and if it is possible to determine an order for sending the messages so that there
isn’t any duplicate message to any UE.

6

Figure 2.3 Recursive Doubling

2.6 Invariants

Precondition A value on one UE that needs to be distributed to other UEs.

Invariant The initial value on the source UE.

Postcondition The value from the source UE is now distributed on all the destination UEs.

2.7 Examples

2.7.1 Matrix-vector Multiplication in MPI

Listing 2.1 shows an example of using the built-in MPI Bcast construct in MPI to solve the matrix-
vector multiplication problem discussed in Section 2.2 and illustrated in Figure 2.1.

In our simple implementation, we assume that 5 UEs are available. The UE with the
VECTOR PROVIDER NODE ID is responsible for obtaining the value of the vector. Each of the other
UEs is in charge of a particular row of the matrix. Once the VECTOR PROVIDER NODE UE has
obtained the value of the vector, every UE (including itself) calls the MPI Bcast function. The
following code snippet shows the arguments to the function.

67 i f (my id == VECTOR PROVIDER NODE)
68 ob ta i n ve c t o r () ;
69

70 MPI Bcast(vector , VECTOR SIZE, MPI INT , VECTOR PROVIDER NODE, MPICOMMWORLD) ;

The vector argument is the data to be broadcasted to all the UEs. In this case, it is an ar-
ray of integers. The VECTOR SIZE argument is the number of elements in the array to broadcast.
The VECTOR PROVIDER NODE argument tells the implementation that the value of the vector argu-
ment resides on the node with VECTOR PROVIDER NODE as its ID. And finally the MPI COMM WORLD
argument tells the implementation to broadcast the value to every UE in the topology.

7

Listing 2.1 Matrix-vector Multiplication Example Using MPI Bcast

39 int c a l c u l a t e r e s u l t f o r r o w (int row){
40 int r e s u l t = 0 ;
41

42 int∗ matrix row = get matr ix row (row) ;
43

44 int i ;
45 for (i = 0 ; i < VECTOR SIZE; i++) {
46 r e s u l t += matrix row [i] ∗ vec to r [i] ;
47 }
48

49 return r e s u l t ;
50 }
51

52 int main (int argc , char∗ argv []) {
53

54 int my id ;
55 int number o f p roce s so r s ;
56

57 //
58 // I n i t i a l i z e MPI and s e t up SPMD programs
59 //
60 MPI Init(&argc ,&argv) ;
61 MPI Comm rank(MPI COMM WORLD, &my id) ;
62 MPI Comm size (MPI COMM WORLD, &number o f p roce s so r s) ;
63

64 //
65 // One o f the node ob t a in s the vec t o r and broadcas t s i t
66 //
67 i f (my id == VECTOR PROVIDER NODE)
68 ob ta i n ve c t o r () ;
69

70 MPI Bcast(vector , VECTOR SIZE, MPI INT , VECTOR PROVIDER NODE, MPICOMMWORLD) ;
71

72 //
73 // A l l o ther UEs shou ld c a l c u l a t e t h e i r p a r t i a l v a l u e s
74 //
75 i f (my id != VECTOR PROVIDER NODE) {
76 int my pa r t i a l r e s u l t = c a l c u l a t e r e s u l t f o r r o w (my id) ;
77 p r i n t f (”The p a r t i a l r e s u l t f o r row %d i s %d\n” , my id , my pa r t i a l r e s u l t) ;
78 }
79

80 MPI Final ize () ;
81

82 return 0 ;
83 }

After the vector has been successfully broadcasted, each UE calculates the partial value for each
row in the resulting matrix and prints it out to the console.

8

Listing 2.2 Matrix-vector Multiplication Example Using AtomicIntegerArray in Java

1 import java . u t i l . concurrent . ∗ ;
2 import java . u t i l . concurrent . atomic . AtomicIntegerArray ;
3

4 public class Matr ixVecto rMul t ip l i ca t i on {
5 private stat ic AtomicIntegerArray vector ;
6
7

8 stat ic class RowMultipl ier implements Runnable {
9

10
11

12 public void run () {
13 waitForVectorBroadcast () ;
14

15 int sum = 0 ;
16 for (int i = 0 ; i < row . l ength ; i++) {
17 sum += row [i] ∗ vector . get (i) ;
18 }
19 System . out . p r i n t l n (”The p a r t i a l r e s u l t f o r row ” + rowNumber + ” i s ” +
20 sum) ;
21 }
22

23 }
24

25 public stat ic void createMatr ixVectorMult ip l i cat ionUEs () {
26

27 ExecutorServ i ce executor = Executors . newFixedThreadPool (VECTOR SIZE) ;
28

29 for (int row = 0 ; row < VECTOR SIZE; row++) {
30 RowMult ip l iers [row] = new RowMultipl ier (row) ;
31 executor . execute (RowMult ip l iers [row]) ;
32 }
33

34 }
35

36 public stat ic void main (St r ing [] argv) {
37

38 createMatr ixVectorMult ip l i cat ionUEs () ;
39

40 obta inVector () ;
41

42 }
43

44 }

2.7.2 Matrix-vector Multiplication in Java

Listing 2.2 shows an example of using the AtomicIntegerArray class from the
java.util.concurrent.atomic package in Java 5 to solve the same matrix-vector multiplication
problem.

The implementation is similar to the MPI version from Listing 2.1. RowMultiplier objects are

9

spawned and run in their own threads while waiting for the main thread to broadcast the value of
the vector to them. Once the main thread obtains the value of the vector, the cached value of the
vector in each of the threads is invalidated and they all see the new value from the main thread.

As mentioned previously, a programmer can rely on the volatile keyword automatically to
immediately broadcast the modified value of a shared variable across all UEs in Java, However,
when applied to an array the volatile keyword doesn’t extend the broadcast capabilities to the in-
dividual elements of the array. Thus, updates to the elements of the array might not be broadcasted
to the other UEs which might still have cached copies of the values.

The AtomicIntegerArray class solves that problem by extending the semantics of the volatile
keyword. We use it in our Listing 2.2 to store the values of the vector variable used for matrix
multiplication. Any updates to the vector variable from the main UE will be broadcasted to the
other UEs.

2.8 Known Uses

Broadcast is used for many important parallel algorithms such as matrix-vector multiplication,
Gaussian elimination, shortest paths and vector inner product.

2.9 Related Patterns

Message-Passing In message-passing environments such as MPI and Charm++, Reduction is
always implemented using the Message-Passing pattern[OPL].

Scatter Broadcast sends the same data to other UES; Scatter sends different chunks of data
to other UEs.

10

CHAPTER 3

Reduction

3.1 Problem

How does one efficiently combine a collection of values, one on each UE, into a single object?

3.2 Context

Most parallel algorithms divide the problem that needs to be solved into tasks that are assigned
to different UEs. Doing so allows the different tasks to be performed in parallel on different UEs.
Once those tasks are done, it is usually necessary to combine their partial results into a single
object that represents the answer to the original problem.

Consider the problem of numerical integration of some function. One way to parallelize this
algorithm would be to divide the domain of the function into different parts and assign a UE to
integrate each part. Once all the UEs are done with the integration of their sub-domains, we
combine their results using a sum operator to obtain the total value. This pattern of combining
the results is called a reduction.

The example in Figure 3.1 divides the numerical integration problem into tasks and maps those
tasks unto four different UEs.

A simple approach for combining those values involves waiting for the results from all four
tasks to finish before computing the sum. While this works, it also fails to exploit any inherent
parallelism between the tasks. In the example, it is actually unnecessary to wait for the results of
the four tasks before calculating the sum.

We could do better and partially sum the results as they arrive. For instance, we could compute
the partial sum from UE#1 and UE#2 and the partial sum of UE#3 and UE#4 in parallel and
then combine both partial sums to find the total sum. We perform the summation operation on
each piece of data as it arrives.

The inherent parallelism arises from the properties of the operator that is used to combine the

11

Figure 3.1 Numerical Integration

partial results. In our example, the summation operation is both associative1 and commutative2.
Those properties allow the operation to be performed as each partial result arrives. Whenever pos-
sible, a properly implemented reduction allows the programmer to efficiently combine a collection
of values into a single value by exploiting any inherent parallelism in the process.

Nonetheless, combining a collection of values does not always require using Reduction. Con-
sider an application that stores its results in a bit array. Each UE computes the value (0 or 1) for
a range of positions with no overlaps in the bit array. Using Reduction to combine the values
would require merging the values from each UE and building up partial bit arrays. Because the
value from each UE corresponds to a range of positions in the final bit array, care must be taken
while merging and building up the partial bit arrays. Moreover, in message-passing environments,
all those partial bit arrays incur the overhead of being sent to different UEs in order to compute
the result.

Instead, for this application, it might be better to rely on the Gather pattern. One UE,
say UE#1, is responsible for merging all the results. The other UEs compute the values for non-
overlapping ranges in the bit array and send their results as a tuple to UE#1. After receiving all
the values, UE#1 produces the complete bit array in the desired order.

3.3 Forces

Common operator Reduction requires that the same operator is used to combine the values
from all the different UEs. This is a common pattern in scientific computing and will fit

1Associative Property: (A + B) + C = A + (B + C)
2Commutative Property: A + B = B + A

12

the needs of most algorithms. However, if an algorithm requires combining the results from
different UEs using different operations, then it is better to orchestrate the communication
using other patterns.

Associative and/or commutativity of operator Exploiting any inherent parallelism in re-
duction relies on the fact the operator used in combining the partial result is at least
associative and/or commutative. Most operators that are used in scientific computing such
as maximum, minimum, sum and product are both associative and commutative. Using
reduction with non-associative and non-commutative operations is possible but offers no
potential parallelism.

Load-balancing Reduction operations with associative and/or commutative operators offer po-
tential for load-balancing because the task of partially combining the values can be executed
on different UEs as each partial value is computed. This is useful especially for operations
that are computationally-intensive.

Floating-point numbers Care has to be taken while using reduction with floating-point num-
bers. Certain operations such as addition on floating-point numbers are neither strictly
associative nor commutative. Round-off errors can easily accumulate depending on the order
in which the operator is applied to the partial values. In cases where the partial values have
roughly the same magnitude, the loss of precision is usually acceptable for the programmer.
However, if the partial values have vastly different magnitudes, the error could be unaccept-
able; programmers should not rely on reduction to combine the partial values but should
instead orchestrate the communication using other patterns.

3.4 Solution

Use the reduction construct if one is provided by the parallel programming environment. Reduc-
tion is such a common pattern in scientific computing that it is included in most parallel program-
ming environments (see Table 3.1). The reduction construct that is provided by the programming
environments has been tuned to satisfy the needs of most programmers. It is designed to exploit
the inherent concurrency that is possible with associative and commutative binary operators.

Environment Reduction Construct
MPI MPI Reduce(sendbuf, recvbuf, count, datatype, op, root, comm)
OpenMP #pragma omp reduction (operator: list)
Charm++ void contribute(int nBytes, const void *data,

CkReduction::reducerType type)
CUDA NONE
Cilk inlet
FJ Framework Generic T reduce(Ops.Reducer<T> reducer, T Base) method & various

predefined operations (max, min, sort, etc) in the ParallelArray class
Intel TBB void parallel reduce(...)
Java NONE

Table 3.1: Reduction constructs in parallel programming environments

13

Deciding what operator to use in combining the the collection of values is also part of the
process of applying the Reduction pattern. Most environments already provide some built-in
operators for common tasks such as determining the maximum, minimum, sum, product, etc. that
programmers can use directly in their reduction operations.

Moreover, most environments also provide support for user-defined operators that programmers
can write. When writing their own operators, programmers have to consider whether their operators
are associative and/or commutative. Programmers also have to decide on the data structure —
single value, tuples, etc — that is used to store the partial result.

On the other hand, if the parallel programming environment does not provide a reduction
construct programmers might need to write one of their own. Incidentally, the reduction construct
provided by the environment might make the implicit assumption that the operator needs to be
commutative and/or associative. If the operator doesn’t have those those properties, programmers
need to write their own reduction construct.

We summarize the two common methods — serial computation and tree-based reduction —
for implementing reduction operations presented in [MSM04]. More complex implementation tech-
niques are presented in [GGKK03].

3.4.1 Serial Computation

Figure 3.2 Serial Computation

If the reduction operator is not associative then the programmer needs to “serialize” the com-
putation. One way of doing so is shown in Figure 3.2. In this method, all UEs send their values to

14

UE#1 in a predetermined order. And UE#1 is in charge of combining those values using the OP
operator. At the end of the computation, only UE#1 contains the combined value.

3.4.2 Tree-based Reduction

Figure 3.3 Tree-based Reduction

However, if the reduction operator is associative, we can take advantage of the inherent paral-
lelism by performing the reduction operation in parallel using a tree-based reduction as shown in
Figure 3.3.

In this specific example, we assume that we only have 4 UEs. UE#1 applies the OP operator
to its own value and the value that it receives from UE#2. It then stores that value temporarily.
Similarly, UE#3 will apply the OP operator to the value it receives from UE#4 and stores that
value temporarily. Finally, UE#1 combines its value and the value it receives from UE#3 using
the OP operator and stores the combined results.

3.5 Invariants

Precondition A collection of values on different UEs that need to be combined using the same
operator.

Invariant The initial values on each of the different UEs.

Postcondition The values from different UEs are combined using the operator and are contained
in an object on one of the UEs.

15

3.6 Examples

3.6.1 Numerical Integration with MPI

Listing 3.1 Numerical Integration Example Using MPI Reduce

30 int main (int argc , char∗ argv []) {
31

32 int my id ;
33 int number o f p roce s so r s ;
34

35 //
36 // I n i t i a l i z e MPI and s e t up SPMD programs
37 //
38 MPI Init(&argc ,&argv) ;
39 MPI Comm rank(MPI COMM WORLD, &my id) ;
40 MPI Comm size (MPI COMM WORLD, &number o f p roce s so r s) ;
41

42 double i n t e r v a l = (UPPER LIMIT − LOWER LIMIT) / number o f p roce s so r s ;
43 double my lower bound = LOWER LIMIT + my id ∗ i n t e r v a l ;
44 int i n t e r v a l s p e r p r o c e s s o r = NUMBER OF INTERVALS / number o f p roce s so r s ;
45 double de l t a = (UPPER LIMIT − LOWER LIMIT) / NUMBER OF INTERVALS;
46

47 double my pa r t i a l i n t e g r a t i o n = c a l c u l a t e i n t e g r a l (my lower bound , de l ta ,
48 i n t e r v a l s p e r p r o c e s s o r) ;
49

50 //
51 // Combine the r e s u l t s from d i f f e r e n t UEs
52 //
53 double t o t a l i n t e g r a t i o n ;
54 MPI Reduce(&my pa r t i a l i n t e g r a t i on , &t o t a l i n t e g r a t i o n , 1 , MPI DOUBLE, MPI SUM,
55 MASTER NODE, MPICOMMWORLD) ;
56

57 i f (my id == MASTER NODE) {
58 p r i n t f (”The r e s u l t o f the i n t e g r a t i o n i s %f \n” , t o t a l i n t e g r a t i o n) ;
59 }
60

61 MPI Final ize () ;
62

63 return 0 ;
64 }

Listing 3.1 shows an example of using the built-in MPI Reduce construct in MPI to solve the
numerical integration problem discussed in Section 3.2 and illustrated in Figure 3.1.

Our strategy involves dividing the domain of the function into several non-overlapping sub-
domains. The numerical integration for each sub-domain is calculated in parallel and their values
are reduced to obtain the value of integrating the function over the entire domain.

The domain (UPPER LIMIT - LOWER LIMIT) of the function to integrate is divided evenly be-
tween the number of available UEs as determined by the MPI Comm size function. Each UE handles
a particular sub-domain and none of the sub-domains overlap. In our example, each UE is alloted
the same number of intervals i.e. dx to calculate3.

3A better scheme could use the rate of change of the function to determine how many intervals to calculate for

16

Each UE starts integrating beginning from its own lower bound. The partial result is stored
in the my partial integration variable. After the partial result is available, each UE calls the
MPI Reduce function. The following code snippet shows the arguments to the function.

53 double t o t a l i n t e g r a t i o n ;
54 MPI Reduce(&my pa r t i a l i n t e g r a t i on , &t o t a l i n t e g r a t i o n , 1 , MPI DOUBLE, MPI SUM,
55 MASTER NODE, MPICOMMWORLD) ;

The MPI SUM argument tells the reduction operation to sum each of the my partial integration
variables on each UE and to store the result in the total integration variable. The result will
be stored on the MASTER NODE UE.

Internally, the MPI implementation would take advantage of the associative and commuta-
tive properties of the MPI SUM operation and perform the summation in parallel yielding better
performance.

3.6.2 Monte Carlo Simulation with MPI

Listing 3.2 shows another example of using the built-in MPI Reduce construct in MPI to estimate
the value of π using the Monte Carlo pattern.

Figure 3.4 Estimating π

Estimating π using this method involves randomly “throwing” points in the first quadrant of
the square shown in Figure 3.4. Some of those points will land inside the circumference of the unit
circle and some will land outside the circumference. The ratio of the points inside the circle to
total points thrown gives an estimate for π based on the following formula:

Area of quarter unit circle
Area of quarter of square

=
(π)(1 unit)2

4

(1 unit)2

≈ Points in circle
Total points in first quadrant

⇒ π ≈ 4 ∗ Points in circle
Total points in first quadrant

The function count points in circle(int *) on lines 17 - 27 of Listing 3.2 shows how the
points are randomly generated and tested to see if they are inside the circumference.

each sub-domain. A slower changing function would require less intervals.

17

Listing 3.2 Estimating π Example Using MPI Reduce

17 int c o u n t p o i n t s i n c i r c l e (int∗ s t r eam id){
18 int i , my count = 0 ;
19 double x , y , d i s t ance squa r ed ;
20 for (i = 0 ; i < ITERATIONS; i++) {
21 x = (double) sprng (s t ream id) ;
22 y = (double) sprng (s t ream id) ;
23 d i s t ance squa r ed = x∗x + y∗y ;
24 i f (d i s t ance squa r ed <= RADIUS) my count++;
25 }
26 return my count ;
27 }
28

29 int main (int argc , char∗ argv []) {
30

31 int my id ;
32 int number o f p roce s so r s ;
33

34 //
35 // I n i t i a l i z e MPI and s e t up SPMD programs
36 //
37 MPI Init(&argc ,&argv) ;
38 MPI Comm rank(MPI COMM WORLD, &my id) ;
39 MPI Comm size (MPI COMM WORLD, &number o f p roce s so r s) ;
40

41 //
42 // I n i t i a l i z e pseudo p a r a l l e l random number genera tor
43 //
44 gene ra t e s e ed () ;
45 int∗ s t r eam id = i n i t s p r n g (SPRNG LFG, my id , number o f proces sor s , rand () ,
46 SPRNG DEFAULT) ;
47

48 int my count = c o u n t p o i n t s i n c i r c l e (s t r eam id) ;
49

50 //
51 // Combine the r e s u l t s from d i f f e r e n t UEs
52 //
53 int t o t a l c oun t ;
54 MPI Reduce(&my count , &to ta l count , 1 , MPI INT , MPI SUM, MASTER NODE,
55 MPICOMMWORLD) ;
56

57 i f (my id == MASTER NODE) {
58 double e s t imated p i = (double) t o t a l c oun t /
59 (ITERATIONS ∗ number o f p roce s so r s) ∗ 4 ;
60 p r i n t f (”The es t imate o f p i i s %g\n” , e s t imated p i) ;
61 }
62

63 MPI Final ize () ;
64

65 return 0 ;
66 }

18

Each UE is initialized to perform the same algorithm in parallel albeit with different random
points. To ensure that each UE receives a set of random points with minimal chances of repetition,
we rely on the SPRNG[SPR] pseudo parallel random number generator library.

After each UE has successfully completed the algorithm, MPI Reduce function is called to com-
bine the estimates of π from each UE.

3.6.3 Histogram Accumulation with CUDA

Listing 3.3 shows an example of using CUDA for accumulating histograms of an integer array.
CUDA does not have a built-in construct for performing a reduction operation. Therefore, pro-
grammers have to devise their own approach. And because CUDA expects a SIMD programming
model, the reduction implementation has to conform with that model to achieve good performance.

The problems starts with an input array of size n consisting of integers ranging from 0 to
HISTOLAYER - 1. We wish to determine the frequency of each integer in the input array.

To perform the computation, we generate n threads — one for each element in the input array.
Each thread represents a histogram of one particular integer value; the histogram accumulated by
each thread will have value 1 for one particular integer, and value 0 for all other integers. We apply
the tree-based reduction introduced in section 3.4.2 to accumulating the values from each thread
and construct the overall histogram.

For CUDA programming, threads are packed into independent thread blocks. Threads within
a thread block can synchronize with each other using the intrinsic function syncthreads().
The syncthreads() function acts as a barrier. However, there is no explicit synchronization
methods for synchronizing threads in different thread blocks. We propose a two phase reduction
in listing 3.3. In the first phase, we do the local reduction within each thread block. In the second
phase, we summarize all the local reduction results in one thread block, and then do the overall
global reduction. The two phase reduction is summarized in Figure 3.5. Depending on the size of
the input array, sometimes more phases are required for better performance.

Figure 3.5 Two phase reduction using CUDA.

Listing 3.3 is the routine for the histogram accumulation. Listing 3.4 is the routine for the first
phase reduction. Listing 3.5 is the routine for the second phase reduction. Listing 3.6 is the routing
for tree-based reduction.

19

Listing 3.3 Routine for Histogram Accumulation

117 void CalcHistoGram (int n , int∗ devFeature , int∗ devHistoResult , int r educ t i onLeve l)
118 {
119 int blockNum = (n + BLOCKSIZE − 1) / BLOCKSIZE;
120 dim3 blockDim (BLOCKSIZE, 1) ;
121 dim3 gridDim (blockNum , 1) ;
122 int∗ devHisto = 0 ;
123 cudaMalloc ((void∗∗)&devHisto , blockNum∗HISTOLAYER∗ s izeof (int)) ;
124

125 // F i r s t Phase Reduction
126 CalcHistoPerBlock<<<gridDim , blockDim>>>(n , devFeature , devHisto , r educt i onLeve l) ;
127 dim3 oneGrid (1 , 1) ;
128

129 //Second Phase Reduction
130 CalcHistoPerGrid<<<oneGrid , blockDim>>>(blockNum , devHisto , devHistoResult , r educ t i onLeve l) ;
131 cudaFree (devHisto) ;
132 }

Listing 3.4 Routine for First Phase Reduction

46 g l o b a l void CalcHistoPerBlock (int n , int∗ inputArray , int∗ blockHistogram ,
47 int r educ t i onLeve l)
48 {
49 int index = IMUL(blockDim . x , b lockIdx . x) + threadIdx . x ;
50 s h a r e d int devResult [BLOCKSIZE∗HISTOLAYER] ;
51

52 i f (index < n)
53 {
54 // I n i t i a l i z a t i o n
55 int c o l o r = inputArray [index] ;
56 for (int i = 0 ; i < c o l o r ; i++)
57 devResult [BLOCKSIZE ∗ i + threadIdx . x] = 0 ;
58 devResult [c o l o r ∗ BLOCKSIZE + threadIdx . x] = 1 ;
59 for (int i = co l o r + 1 ; i < HISTOLAYER; i++)
60 devResult [BLOCKSIZE ∗ i + threadIdx . x] = 0 ;
61

62 sync th r ead s () ;
63 TreeReduction (devResult , n , r educ t i onLeve l) ;
64

65 i f (threadIdx . x == 0)
66 {
67 for (int i = 0 ; i < HISTOLAYER; i++)
68 {
69 int r e s u l t I d x = i ∗gridDim . x+blockIdx . x ;
70 blockHistogram [r e s u l t I d x] = devResult [i ∗BLOCKSIZE] ;
71 }
72 }
73 }
74 }

20

Listing 3.5 Routine for Second Phase Reduction

76 g l o b a l void CalcHistoPerGrid (int blockNumber , int∗ blockHistogram , int∗
77 f ina lHi s togram , int r educ t i onLeve l)
78 {
79 s h a r e d int devResult [BLOCKSIZE ∗ HISTOLAYER] ;
80

81 // I n i t i a l i z a t i o n
82 i f (threadIdx . x < blockNumber)
83 {
84 for (int i = 0 ; i < HISTOLAYER; i++)
85 {
86 devResult [i ∗BLOCKSIZE + threadIdx . x] = 0 ;
87 }
88 }
89

90 //Apply s e r i a l r educ t i on f o r taskPerTh e lements
91 int taskPerTh = (blockNumber + BLOCKSIZE − 1)/BLOCKSIZE;
92

93 for (int i = 0 ; i < taskPerTh ; i++)
94 {
95 int index = threadIdx . x + i ∗BLOCKSIZE;
96 i f (index < blockNumber)
97 {
98 for (int j = 0 ; j < HISTOLAYER; j++)
99 {

100 devResult [j ∗BLOCKSIZE + threadIdx . x] += blockHistogram [index + j ∗
101 blockNumber] ;
102 }
103 }
104 }
105 sync th r ead s () ;
106 TreeReduction (devResult , blockNumber , r educt i onLeve l) ;
107

108 i f (threadIdx . x == 0)
109 {
110 for (int i = 0 ; i < HISTOLAYER; i++)
111 {
112 f i na lH i s togram [i] = devResult [i ∗BLOCKSIZE] ;
113 }
114 }
115 }

3.7 Known Uses

In addition to the examples mentioned, Reduction is used in various scientific computations such
as dot product calculations and L2 Norm[L2N].

3.8 Related Patterns

Barrier A Barrier can be implemented as a Reduction with a null-operator. The programmer
does not care about the values on each UE or the operator to be used in combining them. As

21

Listing 3.6 Tree-Based Reduction

22 d e v i c e void TreeReduction (int∗ devArray , int n , int r educ t i onLeve l)
23 {
24 //Tree−Based Reduction
25 int mask = 1 ;
26 for (int l e v e l= 0 ; l e v e l < r educ t i onLeve l ; l e v e l++)
27 {
28 i f ((threadIdx . x & mask) == 0)
29 {
30 int index1 = threadIdx . x ;
31 int index2 = (1 << l e v e l) + threadIdx . x ;
32 i f (IMUL(blockDim . x , b lockIdx . x) + index2 < n)
33 {
34 for (int i= 0 ; i < HISTOLAYER; i++)
35 {
36 devArray [BLOCKSIZE ∗ i + index1] += devArray [BLOCKSIZE ∗ i + index2] ;
37 }
38 }
39

40 }
41 mask = (mask<<1)|1;
42 sync th r ead s () ;
43 }
44 }

the reduction operation proceeds, all UEs block while waiting for each other to reduce their
values. Once all UEs have completed the reduction, they can proceed with their computation
again. A null-operator Reduction acts as a barrier that synchronizes all UEs. This tech-
nique is used in Charm++ which does not provide a Barrier construct, only a Reduction
construct.

Message-Passing In message-passing environments such as MPI and Charm++, Reduction is
always implemented using the Message-Passing pattern[OPL].

22

Bibliography

[Agh86] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA, USA, 1986.

[Boy97] Robert L. Boylestad. Introductory Circuit Analysis. Prentice Hall, 8th edition, 1997.

[Cha] Charm++ Parallel Programming Model. http://charm.cs.uiuc.edu/.

[Cil] The Cilk Project. http://supertech.csail.mit.edu/cilk/.

[CUD] NVIDIA CUDA. http://www.nvidia.com/object/cuda what is.html.

[GGKK03] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to
Parallel Computing. Addison Wesley, 2003.

[Jav] Java. http://www.java.com/en/.

[JSR] JSR-166. http://gee.cs.oswego.edu/dl/concurrency-interest/.

[L2N] L2-Norm. http://mathworld.wolfram.com/L2-Norm.html.

[MPI] Message Passing Interface Forum. http://www.mpi-forum.org/.

[MSM04] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for Parallel Pro-
gramming. Addison Wesley, 2004.

[Ope] The OpenMP API Specification for Parallel Programming. http://openmp.org/wp/.

[OPL] Berkeley Pattern Language for Parallel Programming. http://parlab.eecs.
berkeley.edu/wiki/patterns/patterns.

[SPR] Scalable Parallel Pseudo Random Number Generators Library. http://sprng.cs.
fsu.edu/.

[TBB] Intel threading building blocks. http://www.threadingbuildingblocks.org/.

23

http://charm.cs.uiuc.edu/
http://supertech.csail.mit.edu/cilk/
http://www.nvidia.com/object/cuda_what_is.html
http://www.java.com/en/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://mathworld.wolfram.com/L2-Norm.html
http://www.mpi-forum.org/
http://openmp.org/wp/
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://sprng.cs.fsu.edu/
http://sprng.cs.fsu.edu/
http://www.threadingbuildingblocks.org/

	Introduction
	Broadcast
	Problem
	Context
	Also Known As
	Forces
	Solution
	Sequential Broadcast
	Recursive Doubling

	Invariants
	Examples
	Matrix-vector Multiplication in MPI
	Matrix-vector Multiplication in Java

	Known Uses
	Related Patterns

	Reduction
	Problem
	Context
	Forces
	Solution
	Serial Computation
	Tree-based Reduction

	Invariants
	Examples
	Numerical Integration with MPI
	Monte Carlo Simulation with MPI
	Histogram Accumulation with CUDA

	Known Uses
	Related Patterns

